Oceanographic Conditions and Fishery resources in the Gulf of Thailand

Anukul Buranapratheprat¹ and Praulai Nootmorn² ¹Burapha University ²Department of fisheries

WATER COLUMN CONDITIONS IN GOT

0

SEASONAL VARIATIONS IN T, S AND σ_t IN GOT

Data from NAGA Expedition: 1959 - 1961

Yanagi et al. (2001)

Fig. 12. Schematic representation of seasonal variations in wind, heat flux through the sea surface, river discharge, stratification, density-driven current and wind-driven current in the Gulf of Thailand.

VARIATIONS IN SCS WATER INTRUSION

0

SEASONAL SURFACE CIRCULATIONS

December

Mag [m/s] @ Depth [m]=first

Mag [m/s] @ Depth [m]=first

July

DOUBLE THERMOCLINE

DOUBLE THERMOCLINE

SEAFDEC DATA 24 Apr – 17 May 1996

SEAFDEC OBSERVATION 14 MARCH – 12 APRIL 2013

SEAFDEC OBSERVATION 14 MARCH – 12 APRIL 2013

SEAFDEC OBSERVATION 14 MARCH – 12 APRIL 2013

SEAFDEC OBSERVATION 14 MARCH – 12 APRIL 2013

Near-bottom water intrusion

Sub-surface chlorophyll maxima

Sub-surface

hypoxic water

SEAFDEC OBSERVATION 14 MARCH – 12 APRIL 2013

Coastal upwelling in GoT

Coastal upwelling along the west coast based on POM

Coastal upwelling along the west coast WOA dataset

14°N

12°N

10°N

8°N [

6°N

Coastal upwelling along the east coast based on POM

Coastal upwelling along the east coast WOA dataset

Wind field and MODIS Chl-a during SW monsoon

Wind field and MODIS Chl-a during NE monsoon

MODIS Chl-a variations in the west coast

Nearshore hypoxia induced by coastal upwelling ?

The movement of hypoxic water mass and upwelling in the west coast

2D Current in August

Wind streamline 600 m above MSL on Oct 15, 2017

แผนที่ลมระดับ 600 เมตรจากระดับน้ำทะเลปานกลาง วันที่ 15 ต.ค. 2560 เวลา 13.00 น.

Source: Dr. Wattana Kanboa

THAILAND COASTAL HE RADAR SURFACE RESIDUAL CIRCULATION

10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65

Coastal Radar Station by MOST/GISTDA

Daily averaged surface current on Oct 17, 2017 from HF Radar BAN THA LAD operated by GISTDA

Upwelling induces hypoxic water to surface

Hypoxic water

moves southward

SATTAHIP

CIRCULATION AND SHORT MACKEREL DISTRIBUTION¹

¹The survey results from Department of Fisheries

Life cycle of the short mackerel

WHAT CONTROL THE DISTRIBUTION OF MACKEREL IN GOT?

- The spawning grounds: More than one? Where?
- Do we understand the life cycle clearly?
- Do they distribute or migrate with water circulation?
- Are oceanographic conditions important? Water column conditions? Upwelling?

THANK YOU

 \bigcirc

0